1,718 research outputs found

    General Relativistic Magnetohydrodynamic Simulations of Black Hole Accretion Disks

    Full text link
    Observations are providing increasingly detailed quantitative information about the accretion flows that power such high energy systems as X-ray binaries and active galactic nuclei. Analytic models of such systems must rely on assumptions such as regular flow geometry and a simple, parameterized stress. Global numerical simulations offer a way to investigate the basic physical dynamics of accretion flows without these assumptions. For black hole accretion studies one solves the equations of general relativistic magnetohydrodynamics. Magnetic fields are of fundamental importance to the structure and evolution of accretion disks because magnetic turbulence is the source of the anomalous stress that drives accretion. We have developed a three-dimensional general relativistic magnetohydrodynamic simulation code to evolve time-dependent accretion systems self-consistently. Recent global simulations of black hole accretion disks suggest that the generic structure of the accretion flow is usefully divided into five regimes: the main disk, the inner disk, the corona, the evacuated funnel, and the funnel wall jet. The properties of each of these regions are summarized.Comment: invited review at the conference "Stellar-mass, Intermediate-mass, and Supermassive Black Holes", held in Kyoto, Japan, Octorber 28-31, 2003, to be published in Progress of Theoretical Physics Supplemen

    Scattering of a Long Cosmic String by a Rotating Black Hole

    Get PDF
    The scattering of a straight, infinitely long string by a rotating black hole is considered. We assume that a string is moving with velocity v and that initially the string is parallel to the axis of rotation of the black hole. We demonstrate that as a result of scattering, the string is displaced in the direction perpendicular to the velocity by an amount kappa(v,b), where b is the impact parameter. The late-time solution is represented by a kink and anti-kink, propagating in opposite directions at the speed of light, and leaving behind them the string in a new ``phase''. We present the results of the numerical study of the string scattering and their comparison with the weak-field approximation, valid where the impact parameter is large, b/M >> 1, and also with the scattering by a non-rotating black hole which was studied in earlier works.Comment: 27 pages, 14 figures, to be published in Classical and Quantum Gravit

    Afrikaans as sangtaal*

    Get PDF
    Eerstens: Sang, wat een van die onderafdelings vorm van die breë begrip „musiek”, wat op sy beurt weer een van die vertakkings is van die nog breër begrip „kuns”. Aan definisies van kuns en meer spesifiek van musiek is daar geen gebrek nie. Laat ons vir die huidige volstaan met die volgende: Musiek is die sinvolle rangskikking van musikale klanke in ’n sinvolle ritmiese verband. Sang, as een van die middele waarmee musiek gemaak word, maak gebruik van die menslike stem wat daartoe in staat is om verskillende toonhoogtes voort te bring in ’n vinniger of stadiger opeenvolging met mekaar. Die menslike stem kan slegs een toonhoogte op ’n gegewe moment voortbring, en die derde groot element van musiek nl. harmonie (die ander twee is melodie en ritme en is implisiet in die bogenoemde definisie) kan alleen dán na vore kom wanneer een stem in kombinasie met een of meer ander stemme of instrumente aan- gewend word

    Estimating ionospheric currents by inversion from ground-based geomagnetic data and calculating geoelectric fields for studies of geomagnetically induced currents

    Get PDF
    This research focuses on the inversion of geomagnetic variation field measurements to obtain the source currents in the ionosphere and magnetosphere, and to determine the geoelectric fields at the Earth’s surface. During geomagnetic storms, the geoelectric fields create geomagnetically induced currents (GIC) in power networks. These GIC may disturb the operation of power systems, cause damage to power transformers, and even result in power blackouts. In this model, line currents running east–west along given latitudes are postulated to exist at a certain height above the Earth’s surface. This physical arrangement results in the fields on the ground being composed of a zero magnetic east component and a nonzero electric east component. The line current parameters are estimated by inverting Fourier integrals (over wavenumber) of elementary geomagnetic fields using the Levenberg–Marquardt technique. The output parameters of the model are the ionospheric current strength and the geoelectric east component at the Earth’s surface. A conductivity profile of the Earth is adapted from a shallow layered-Earth model for one observatory, together with a deep-layer model derived from satellite observations. This profile is used to obtain the ground surface impedance and therefore the reflection coefficient in the integrals. The inputs for the model are a spectrum of the geomagnetic data for 31 May 2013. The output parameters of the model are spectrums of the ionospheric current strength and of the surface geoelectric field. The inverse Fourier transforms of these spectra provide the time variations on the same day. The geoelectric field data can be used as a proxy for GIC in the prediction of GIC for power utilities. The current strength data can assist in the interpretation of upstream solar wind behaviour

    Rigidly Rotating Strings in Stationary Spacetimes

    Full text link
    In this paper we study the motion of a rigidly rotating Nambu-Goto test string in a stationary axisymmetric background spacetime. As special examples we consider the rigid rotation of strings in flat spacetime, where explicit analytic solutions can be obtained, and in the Kerr spacetime where we find an interesting new family of test string solutions. We present a detailed classification of these solutions in the Kerr background.Comment: 19 pages, Latex, 9 figures, revised for publication in Classical and Quantum Gravit
    • …
    corecore